Close X
Sunday, September 22, 2024
ADVT 
Health

Living heart tissue grown

Darpan News Desk IANS, 12 May, 2014 03:40 PM
    In a first, scientists have merged stem cell and 'organ-on-a-chip' technologies to grow functioning human heart tissue carrying an inherited cardiovascular disease.
     
    The research is a big step forward for personalised medicine as now, a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory, a promising research says.
     
    In this case, the scientists modelled the cardiovascular disease Barth syndrome - a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. 
     
    The untreatable disorder primarily appears in boys and is associated with a number of symptoms affecting heart and skeletal muscle function.
     
    “In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance,” explained Kevin Kit Parker from Harvard University's Wyss Institute for Biologically Inspired Engineering.
     
    The researchers took skin cells from two Barth syndrome patients and manipulated the cells to become stem cells that carried these patients' TAZ mutations.
     
    Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment - tricking the cells into joining together as they would if they were forming a diseased human heart.
     
    The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients.
     
    The investigators then used genome editing to mutate TAZ in normal cells.
     
    On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease.
     
    “Whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle,” said Harvard scientist William Pu.
     
    Their work has been published in the journal Nature Medicine.

    MORE Health ARTICLES

    How bariatric surgery can help control diabetes

    How bariatric surgery can help control diabetes
    That bariatric surgery, or obesity surgery, leads to weight loss is well known, but researchers have now identified the mechanism why obesity surgery also leave positive effects on diabetes and heart diseases.

    How bariatric surgery can help control diabetes

    Now, 3D-printed plaster cast to heal wound faster

    Now, 3D-printed plaster cast to heal wound faster
    In what could revolutionise plaster cast technology, a Turkish design student has unveiled a slick 3D-printed cast with ventilation holes that reduces healing time by around 40 percent than currently used plaster casts.

    Now, 3D-printed plaster cast to heal wound faster

    Smart cup that delivers coffee, news too!

    Smart cup that delivers coffee, news too!
    Reading the morning newspaper while sipping a cup of coffee is set to become an even smoother experience as a Finnish coffee roastery company has developed a smart coffee cup that could also display an e-paper.

    Smart cup that delivers coffee, news too!

    An 'upside-down planet' discovered

    An 'upside-down planet' discovered
    Like so many interesting discoveries, this one happened largely by accident. An astronomer has discovered an ‘upside-down planet’ that reveals new method for studying binary star systems.

    An 'upside-down planet' discovered

    Our ancestors enjoyed summer holidays at Antartica!

    Our ancestors enjoyed summer holidays at Antartica!
    If this information stands true, the history books have to be rewritten soon. According to scientists, some parts on the coldest region on our earth - Antartica - was as warm as today's California coast.

    Our ancestors enjoyed summer holidays at Antartica!

    Garnish food with edible flowers for disease-free life!

    Garnish food with edible flowers for disease-free life!
    Forget food, try some flowers instead to increase immunity. If we go by a new research, common edible flowers in China are rich in phenolics and have excellent antioxidant capacity.

    Garnish food with edible flowers for disease-free life!